2005 Cold facts about hot ice cap, Material time/ Work time/ Life time, Reykjavik Art festival, Skaftfell, Seyðisfjörður, Iceland
COLD FACTS ABOUT HOT ICE CAP by Anna Líndal - Artist statement
Volcanic activity under glaciers, which is greater in Iceland than anywhere else, is most extensive beneath the Vatnajökull glacier. Vatnajökull is both the coldest place in Iceland, and at the same time the hottest glacier in the world.
To come across a boiling mud spring in the middle of a glacier is to make contact with an untouched autonomous world, where past, present and future blend together in one bubbling vortex. A visit to a geothermal area of the Vatnajökull glacier is like a confrontation with the Creation itself. The eddies and variations of the mud springs are as heterogeneous as human beings. One is drawn first to the wildest, the springs that rage and splash in all directions, while others are generally quiet, but with occasional outbursts. Ultimately, one is drawn to those one doesn't even notice until one has grown accustomed to the place, the low-profile springs, hidden here and there, which are so surprising and amusing - one opened up right beneath my feet. For a time everything is united into one, and the world ends at the horizon.
For a while time everything appears calm. But there are forces below, and tension rises. Finally, the fire is released, creative and at the same time destructive. Nothing can stop the eruption. We can only watch. No human agency or machinery can harness that primal energy. Eventually the eruption dies down. New land has come into existence - a vast gorge has formed in the glacier, and within it a new crater.
Other forces take over. They work more slowly, but they have plenty of time. The glacier cools down the new mountain, the ice slowly but surely closes in to cover the new creation. And that makes a new landscape, the glacial landscape, white curved expanses. The cycle of nature.
Anna Líndal, April 2005
Translation by Anna H Yates
Asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf
Asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf
Asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf
Asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf
Asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf asdf